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Abstract

Network Intrusion Detection Systems (NIDS) focus generally on 3 main detection meth-
ods; (i) signature, (ii) anomaly network traffic behaviour, and (iii) protocol analyses. The
challenge in protocol analyses is to detect the correct protocol used and initiate the proper
analyzing method(s). The TCP/IP suite have a standard scheme which predefines port
numbers for each protocol by IANA. However, both benign and evil software are continu-
ously getting more and more sophisticated and do not follow these predefined rules. Bro
is a open source framework for network traffic analyses1 [33]. We will in this paper focus
mainly on protocol analyzing mechanisms in Bro. With Bro we can analyze network traffic
and detect odd protocol/port pairs usage. We will also look at what Bro can contribute
regarding digital forensics. Does the present version of Bro2 hold any machine learning
functionality?

1 Introduction

Traditional security mechanisms like antivirus and firewall are today not enough in the bat-
tle against malware and malicious attacks. We need smart network filtering mechanism that
can detect unknown attacks both from Internet (untrusted) and internal (trusted). Network
intrusion detection system (NIDS) will definitely play an important role in future information
security mechanisms.

1.1 Motivation / Limitation / Outline

Our motivation for this paper is to explore Bro’s protocol analyzing and digital forensics ca-
pabilities. The amount of research projects that have used and use Bro tells us that this is
a interesting piece of software. Hopefully we will also find some interesting machine learning
functions.

We focus mainly on Bro and its capabilities. This project is part of a course in Digital
Forensics II, spring 2012 (5 ECTS 3).

1Bro (or the long version: "The Bro Network Security Monitor") are Unix-based software that are capable
of passively monitor network traffic for suspicious behaviour.

2Bro version 2.0 released Jan 11, 2012.
3ESTC - European Credit Transfer and Accumulation System http://ec.europa.eu/education/

lifelong-learning-policy/ects_en.htm
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We start this article with a general description of the NIDS and especially Bro. Further
we explain Bro’s protocol analyzing functions and contributions in digital forensics (including
possible machine learning functions).Finally we discuss and summarize our findings.

1.2 Background

NIDS

NIDS are network based IDS systems that filters and/or check the computer traffic for unwanted
activity/threats. We often classify the NIDS in two kind of main categories; (i) misuse/signature
and (ii) anomaly [24] [20] [2].

The misuse/signature based NIDS works principally much like an antivirus software. The
misuse/signature NIDS are preloaded with known suspicious patterns/signatures. They are
known to be very efficient and with low false positive. It is important to notice that this kind
of NIDS may not prevent/block new, unknown network attacks. A well known misuse/signature
based NIDS are SNORT R©4. Snort are much used and exists in both community and commercial
versions[27].

The anomaly based NIDS collect networks statistics and define the most normal network
behaviour as a baseline. When this baseline are challenged in some degree (by deviation), the
alarms go off. This kind of NIDS can produce large number of false positive, but may be very
efficient against new, unknown network attacks. Bro [33] is a often referred to as anomaly
based NIDS.

Machine Learning (ML)

Intelligence in technology may sometimes be a subjective opinion - but in this context we will
use the term to describe computer software that have learning capability [25]. We often use the
term ML when computer equipment and/or software have learning capabilities [7] [3]. We split
ML into two main categories: (i) supervised and (ii) unsupervised.

In supervised learning we have a great deal of knowledge of the data we are dealing with.
We can pre-set labels versus parameters in these learning functions and use statistical approach
to classify/analyze data to decide what actions to execute.

In unsupervised learning we only have minor knowledge of the data we are dealing with.
We often use complex statistical algorithms, pattern recognition and data mining techniques
to label the data we analyze. [36][10].

A typical example where ML have succeeded are the process of grouping email into un-
wanted/unsolicited email (SPAM) and normal email (non SPAM).

1.3 Bro Design

Bro is a framework for network analyses and are very popular in many research groups[30].
Bro’s design principals are flexibility and efficiency regarding traffic analyses [19]. We have
included a figure to illustrate the architecture of Bro with explanation below. See figure 1.

Bro’s pure and simple design (without challenging flexibility) have for many years resulted
in many scientific articles/projects in research communities [30].

4Snort is a trademark of Sourcefire, Inc. USA.
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Figure 1: Bro’s Principal Design.

Network Bro needs a physical network connection to get a copy of the network traffic it will
analyze. This is normally done by the use of port mirroring functionality in switches/routers
or a TAP device [37] [23].

Libcap Libcap is the application tcpdump’s packet filtering library [28]. This isolate Bro from
the physical network medium in the operating system.

Event Engine The filtered network data packages from libcap are fed into the next level;
the Event engine. This event engine try to reassemble all the network traffic it gets to known
events/patterns as high as possible in the TCP/IP OSI model[8] - see figure 3. Typical the
event engine will find connection attempts (transport-level), FTP requests/replies, HTTP re-
quests/replies (application-level) and login failed/success (application level). In October 2009
there was about 320 types of these known events that the Bro’s event engine could identify [31].

The event engine performs several (packet) health checks and try to reassemble the packet:

1. Integrity checks (are the packet headers intact? are the IP packet headers correct regard-
ing checksums? etc.)

2. If integrity checks 6= OK; write an error event + drop packet (from further analyses in
Bro)

3. If IP packets; Reassemble IP fragments into datagrams
4. If integrity checks = OK; look up the connection state with associated; (i) source IP

address, (ii) destination IP address and (iii) TCP or UDP port numbers
5. Dispatch the packet to a connection handler (TCP or UDP) for the further corresponding

connection

3



For every TCP packet that arrives the event handler the TCP connection handler performs
the following actions:

1. Verify the TCP header
2. Verify the TCP packets checksum for header
3. Verify the TCP packets checksum(s) for payload
4. If verification above = OK; Are there any SYN/FIN/RST control bits/flags?
5. If flags above are present; set the actual connection state to the active control bit/flag.
6. Process other data acknowledgement in header (if any)
7. Process payload data (if any)

For every UDP packet that arrives the event handler the UDP connection handler reacts.
This handler are similar to TCP but much simpler because it is connection less (e.g. no
connection state). However, UDP sessions use different ports when starting a UDP packet
stream then replying this UDP stream. These states are called pseudo connection states.

The event engine creates a tcpdump network trace file. The connection handlers will ac-
knowledge to this trace-file their packet status when processed; (i) highly interesting (the whole
package are then saved), (ii) medium interesting (header of package saved) or (iii) not interesting
(package history dropped).

Policy Script Interpreter If the event handler raise the interesting flag (medium or high),
the Policy Script Interpreter will further examine/analyze the packets. Bro have specialized
language (Bro language) written scripts that it will execute. These actions will typical be one
or several of the following; (i) execute analysis, (ii) log event, (iii) raise an alert and/or (iv)
update statistics [19].

2 Protocol Analysis

2.1 Challenges

Protocol analysis is a challenge for many reasons: (i) protocols have no standard identification,
(ii) protocols may use other ports then defined by IANA5[5] and (iii) encapsulation. Tradi-
tionally, protocols have been identified my their port usage. Today, ports and applications are
not used as defined by IANA both by benign and malicious reasons. Network administrators
change the default ports configuration for their applications/servers in their firewalls and other
network equipment to hopefully increase their security level.

Some protocols can be very easily detected (e.g. FTP) but other can be more difficult and
more analysis are needed (e.g. telnet/DNS). We need in general a signature database to be
able to detect different protocols.

New application tend to be very intelligent in finding open ports from an users point of view.
A typical example on this is the popular Internet VoIP application Skype c©6 [22]. However,
we need some ports open to use basic services in Internet. Typical TCP port 80 are always
available (HTTP) and Skype will quickly find this port open and use these common ports for
its services.

5Internet Assigned Numbers Authority (IANA) is globally responsible of coordinating Internet protocol
resources.

6Skype is a chat, voice and video telephone software owned by Microsoft c©.
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2.2 Related Work

Protocol analyzing function in computer network software is a hot topic in many research
communities.

Michael Mai finished in 2005 his Master Thesis with the title "Dynamic Protocol Analysis for
Network Intrusion Detection Systems" [13]. This thesis describes an approach called Application
Layer Switch Analyzer (ALSA) using Bro as a platform for their implementation.

Dreger et.al wrote in 2006 an article called Dynamic Application-Layer Protocol Analysis for
Network Intrusion Detection [6] which describes another protocol identification analyzer (PIA)
which most likely are implemented in Bro (much similar name, functionality and description
in Bro documentation and source code).

2.3 Protocol Analysis in Bro

Supported Protocols/Applications Bro supports the following protocols/applications due
to Thursday 21st June, 2012 (in alphabetic order): BITTORENT, DHCP, DNS, FTP, FIN-
GER, HTTP, IRC, MIME, NETBIOS, NETFLOW, NFS, NTP, POP3, RLOGIN, RPC, RPC
PORTMAPPER, SMB, SMTP, SSH, SSL, SYSLOG, TELNET, X.509.

Bro’s Dynamic Protocol Detection

Bro has a dynamic analyzer framework which associate an analyzer tree with every connection.
This design is described in the article "Dynamic application-layer protocol analysis for network
intrusion detection" by Dreger et al. in 2006 as mentioned above [6]. This tree can enable or
disable sub-trees "on the fly" and contain an arbitrary number of analyzers in various constel-
lations. This tree structure can exist the whole lifetime of a connection. This three structure
giver high flexibility and an effective model for protocol analyses:

— Bro can perform protocol analysis independently of ports. With the use of signatures which
match typical protocol dialogues, Bro can look at payload for the correct analyzer and activate
it.

— Bro can disable analyzers if they are parsing the wrong protocol.

In this way Bro can loosely check for what protocols that are used, and if unsure, use multiple
analyzers in parallel. Figure 2 shows an example of an analyzer three.
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Figure 2: Example of an analyzing tree in Bro. Source: Bro’s website [32].

This analyzing tree approach is a per-connection data structure that represents a data
path, which extracts and track information about what analyzers that should be used. If,
typical, Skype are using TCP port 80 this analyzing process will initially check for HTTP traffic
(regarding IANA’s port and service standard scheme). However, when the protocol signature
do not match HTTP, the analyzing process will switch to other protocol signatures/detecting
methods.

Every branch under the class Analyzer are different analyzers, they are child processes of
the class Analyzer. For each connection a so-called Analyzer Tree is created. The packets are
analyzed by the analyzer’s child processes and the results are passed to its successor. Every
analyzer process can activate and deactivate other analyzers.

The Protocol Identification Analyzer (PIA) process are identifying the network packets/data
stream to initiate the correct protocol analyzer. The PIA process is using a so-called protocol
heuristic detection method. When the PIA process finds any match regarding protocols it
initiate a new child analysis process. An PIA process and its child processes may continuously
change in extent the whole lifetime of the connection (to the actual connection is closed).

For every new connection, a new analyzer tree are initiated with the corresponding Trans-
portLayerAnalyzer. For TCP and UDP there are initiated signature matching processes in
search for known protocols.

The analyzers are capable of handle either (i) packet-wise, (ii) stream-wise or (iii) both in
combination.

The analyzers in Bro are highly customizable. One can easily change or add new analyzers
without great programming knowledge [32].

Bro’s BinPAC

The Bro distribution consists of several individual components. binpac is a so-called protocol
parse generator. We can use high level semantic language to describe our protocol analyzer and
let binpac7 generate the C++ code. This makes the urge for continuous change and modifica-

7binpac’s resent version 0.31 was released 2012-01-09
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tion in protocol analysis an mush easier task for us without deep programming knowledge.
Bro source code comes with the following existing binpac scripts (in alphabetic order):

BitTorrent, DCE RPC Simple, DCE RPC, DHCP, DNS, HTTP, NCP, NetFlow, SMB, SMB-
EndPointMapper, SMB-Mailslot, SMB-Pipe, SSL, SYSLOG, SYSLOG[21].

The BinPAC script language is very powerful and flexible and specialized for network packet
analyzing purpose. The table 1 shows a summary of the language functions.

Table 1: binpac language summary.

In table 2 we can see how HTTP protocol are analyzed regarding version and status codes
(the table show only a small part of the actual BinPAC script). Pang et al. have written
an article called binpac: a yacc for writing application protocol parsers[18] which is a good
complement to Bro’s documentation.
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1 type HTTP_PDU(is_orig: bool) = case is_orig of {

2 true -> request: HTTP_Request;

3 false -> reply: HTTP_Reply;

4 };

5 type HTTP_Request = record {

6 request: HTTP_RequestLine;

7 msg: HTTP_Message(BODY_MAYBE);

8 };

9 function expect_reply_body(reply_status: int): ExpectBody

10 %{

11 // TODO: check if the request is "HEAD"

12 if ( (reply_status >= 100 && reply_status < 200) ||

13 reply_status == 204 || reply_status == 304 )

14 return BODY_NOT_EXPECTED;

15 return BODY_EXPECTED;

16 %}

17 type HTTP_Reply = record {

18 reply: HTTP_ReplyLine;

19 msg: HTTP_Message(expect_reply_body(reply.status.stat_num));

20 };

21 type HTTP_RequestLine = record {

22 method: HTTP_TOKEN;

23 : HTTP_WS;

24 uri: HTTP_URI;

25 : HTTP_WS;

26 version: HTTP_Version;

27 } &oneline;

Table 2: A small part of the binpac script http-protocol.pac.

2.4 ML functions in Bro

We will in this section look for ML functions in Bro. Sommer and Paxson published in 2010 an
interesting article regarding ML in NIDS called "Outside the Closed World: On Using Machine
Learning for Network Intrusion Detection" [26]. Here they discuss the use of ML functionality in
NIDS systems (or rather NIDES system8 that specially point out that there are ML functionality
present. The essence of this article is that ML implementation in NIDS have the following
weakness; (i) the need for outlier detection rather then ML classification/similarity function,
(ii) very high cost on classification errors, (iii) great variation in adversary data (network traffic)
makes solutions unstable and finally: (iv) in general evaluation challenges. They seem in general
rather sceptical, but pragmatic to ML in NIDS systems. The article describes recommendations
to implementation and evaluation of ML in NIDS.

The ML Hunt

We started our hunt for Bro’s ML functions in several stages; (i) read a lot of documentation
and articles concerning Bro, (ii) searched on Internet, (ii) searched Bro’s community forum
[29], (iii) downloaded the source code and read/searched it, (iv) practical test of Bro [12] and
finally we ended up asking Bro’s community forum [29] directly regarding ML.

The read/parsed pile of C++ code in our search for ML functions gave us the algorithms
listed below. The developers of Bro have been good in commenting their coding. We did not
use any advanced software in our search for ML functions. The search was mainly done by a
Microsoft Windows utility similar to grep9 with keywords like (i) learning, (ii) algorithm, (iii)
feature, (iv) vector, (v) heuristic etc.

The following interesting algorithms were found:

8Network Intrusion Detection Expert System
9grep - a generic text matching command line tool standard installed in Linux/Unix/BSD
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• Radix or Patricia Tree algorithm — a search algorithms (PATRICIA - Practical
Algorithm to Retrieve Information Coded in Alphanumeric. This piece of software is
developed by The Regents of the University of Michigan[15]. Bro uses this PATRICIA
algorithm to subnet lookup.

• The Smith-Waterman algorithm — a maximum likelihood estimation often used in
data mining to compare patterns/sequence of data[16]. Bro uses Smith-Waterman algo-
rithm to find overlapping substrings (a built-in function for string search and manipula-
tion).

• Threshold Random Walk (TRW) algorithm — an on-line detection algorithm that
identifies malicious remote hosts using Sequential Hypothesis Testing[9].

• Monte Carlo algorithm — an randomization algorithm used for testing entropy (the
average uncertainty).

However, the algorithms above are not categorized as ML functionality. At June 13, 2012
we got an answer from one of Bro developers, Robin Sommer. Unfortunately he could tell us
that Bro is lacking ML functionality with operational reliability as their argument. Please find
the whole answer (an email) fully referred to in Appendix C. Sommer mention an article we
have described in the start of this section[26].

So - we got the not-so-sexy answer: today, there are no ML functionality in Bro . . .

If further interest, please read our practical tests of Bro in project report, course IMT-4641
Computational Forensics 2012, fall [12].

3 Digital Forensics

3.1 Challenges

The technical challenge in digital forensics in networking are in general the huge amount of
data. In our context the more specific sub challenges may typical be; (i) log credibility (ii)
clock/timeline credibility (iii) encapsulated/enciphered data and of-course (iv) managing large
logs[4] [17].

3.2 Logging

Bro is a very powerful tool regarding live forensics due to its great flexibility in filtering and
strong script functionality. We can narrow down and focus on small fragments of large network
traffic with Bro’s strong filtering capabilities. The extensive logging give us valuable data in
historical perspective (though in this context we may talk of seconds). We will focus on logging
as Bro’s contribution to digital forensics.

Bro have very flexible log functionality. As long as Bro can detect traffic - it can produce
logs. Detailed logs of traffic analyzes are generated from the default installation. When Bro is
running the log files are located in folder $ PREFIX/logs/current/. Here are the logs found
when running Bro:

communication.log – Bro’s own log over main and child processes in addition to some statistics
conn.log – connection log: log over every completed connections
dns.log – DNS10 service log

10DNS = Domain Name System.
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dpd.log – log containing Dynamic Protocol Detection log
http.log – log containing HTTP activity
ssl.log – log containing the analyzing results regarding SSL/TLS handshaking and encipher-

ing establishment process
weird.log – log containing unknown/strange activity that is logged for possible later analyzing
known_hosts.log – log containing list of hosts that had a complete TCP handshake that actual

day.
known_services.log – log containing list of IP addresses that had complete TCP handshakes

with other hosts on known services.
software.log – log containing list of known software detected

The log files are in clear text/ASCII and are organized with columns headings with space/TAB
between.

Bro and DataSeries Logging

Bro Team plan to support the Hewlett-Packard DataSeries11 logging format in Bro’s next
version 5.112. The DataSeries support will get much faster and effective binary logging (than
today’s ASCII format) in large volumes. DataSeries are a well documented logging standard
and comes with libraries/API’s for easily analyzing its log in retrospect[1].

3.3 Time Machine

An external software project "closely connected" to Bro is The Time Machine (TM) [34]. The
TM are able to record raw network traffic for later replay and analysis. The TM are a recording
mechanism that can manage gigabit environments. The term "closely connected" refers to that
the developers of Bro and TM have coupled their work so Bro can control/operate TM. In this
way we can first use Bro to filter out the interesting data traffic we will record and later use
Bro to replay this data for further analyzing[11][14].

This is a joint project of the Technische Universität Berlin, the Technische Universität
München, and the ICSI (University of California Berkeley). It is open-source and published
under the BSD license.

4 Discussion and Further Work

4.1 Protocol Detection Analyzing

Protocol ID Standardization

ML have been introduced with success in many areas - especially medicine. Why are ML so
slowly introduced into the computer network area? Our hypothesis is that we (the industry
and research communities) try to serve network protocol standards that have a large gap in
age/development. A lot of protocols in TCP/IP are almost unchanged since they where de-
veloped in early 1960. However, several of TCP/IP protocols have been updated to today’s
demands. We should develop a protocol standard identification system that would help all of
us in this struggle of detecting protocols.

11HP DataSeries is a tookit developed by Hewlett-Packard Labs (http://http://www.hpl.hp.com/and li-
censed under BSD license (same as Bro).

12According to Bro’s BLOG: http://blog.bro-ids.org/2012_05_01_archive.html
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Controlling Adversary Network Traffic and add ML Functionality with Success?

With our experiences in protocol analyzing and NIDS in this article we are tempted to look at
adversary network traffic as a huge unhandy pile of data we desperately need to control. What
if we limited traffic from trusted area to untrusted/Internet and visa verse to the kind of traffic
that we know/can analyze? In a perfect world we may find several human organized system
that can work as an analog to this thought; (i) only certified car drivers and cars are allowed
on public roads, (ii) only certified officers may navigate ships in international sea.

NIDS together with firewalls are brilliant filtering mechanisms to control what network
traffic that are allowed in an organizations different security zones (DMZ13, guest hot-spot,
internal production network, control rooms etc.). We can have different levels of security
filtering with several NIDS slave configured for inline traffic that have the appropriate security
policy level for that department. In this way we have a almost controlled environment regarding
what protocols that are used. We can now add ML functionality with a much more certainty
of success.

However, encapsulation/enciphered traffic may still be a challenge - but we may deny en-
capsulation and/or enciphered traffic for unusual TCP/IP ports.

4.2 Digital Forensics

4.2.1 Privacy

In NIDS logging the most challenging part is privacy. If we sanitize (wash for privacy) our logs
we often loose important information/knowledge. The Europe Parliament decided in March
2006 that they would fight cybercrime with the use of enforced traffic logging for every ISP14

[35]. Are we actually improving the general information security by this? This is a great
dilemma in privacy that is somewhat outside the scope of this article. We do collect a lot of
sensitive data using NIDS and need to control access and the use of this kind of huge data logs.

5 Further work

We would like to collect a new up-to-date network traffic dataset to use in the evaluation
process. A proper evaluating of a NIDS with ML functionality is crucial for next generation of
NIDS/NIDES.

We would like to do a project that challenge odd behaviouring clients with the use of
CAPTHA functions - are they humans or evil software? Will we humans cope this kind of
redirection when we have installed new software e.g? This kind of interrupt in a clients work
both have a technical and a psychological challenge.

6 Summary

We have in this article described Bro NIDS in general and its protocol detection analyzing
process (PIA) especially. Bro is a flexible framework for network analysis and have interesting
capabilities in digital forensics science. Bro have extensive logging mechanisms and with the
third party software "The Time Machine" we can record raw traffic data for later analyzes.
However, we did not find any machine learning functionality in present version. The Bro Team

13DMZ - DeMilitarized Zone. A medium secured area/zone where we place public available services like;
web-, email- and FTP-servers.

14ISP = Internet Service Provider
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seems to be a competent group of developers, so with a growing community and founding this
project will sure be followed with great interest.
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Appendix A — The TCP/IP and OSI model compared.

Figure 3: The OSI and TCP/IP model layers with some popular protocols illustrated.
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Appendix B — The Time Machine Architecture.

Figure 4: The Time Machine architecture.
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Appendix C — Email from The Bro Team

-----Original Message-----

From: Robin Sommer [mailto:robin@icir.org]

Sent: 13. juni 2012 16:45

To: Roger Larsen - Hï¿1

2
gskolen i Gjï¿1

2
vik

Cc: bro@bro-ids.org

Subject: Re: [Bro] Are there any machine learning functionality in Bro?

On Wed, Jun 13, 2012 at 09:56 +0200, Roger Larsen - H gskolen i Gj vik wrote:

> Threshold Random Walk algorithm (TRW).

(TRW doesn’t use machine learning.)

> Are the learning capabilities in Bro well hidden or missing?

Missing. Not by design, but out of operational concerns: it’s extremely hard

to get ML approaches to work reliably. You may be interested in this paper

we wrote a little while ago on this topic:

http://www.icir.org/robin/papers/oakland10-ml.pdf

Robin

--

Robin Sommer * Phone +1 (510) 722-6541 * robin@icir.org

ICSI/LBNL * Fax +1 (510) 666-2956 * www.icir.org
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